Lester Bradshaw

BRADSHAW CONSTRUCTION CORPORATION

TUNNELING SPECIALISTS

From a Contractor's Perspective Bradshaw's Experience

- 54 years as a tunneling contractor
- 26 years as a microtunneling contractor
- 25 years using conventional rock TBMs
- 13 years microtunneling rock

A continuation of my 2013 presentation of "Microtunneling in Rock: Fact or Fiction"

11/11/11/10

"The key then and now is to know <u>when, where</u>, and <u>how</u> to use microtunneling in these challenging ground conditions."

2013 to 2017

- What have we done?
- What have we learned?
- Where do we stand?

What have we done?

- 10 projects in 6 states (FL to TX to PA)
- 15 rock microtunnel drives
 - 11 Two pass steel casing
 - 4 One pass Hobas pipe
- Totaling 7,000+ LF

KEYS TO SUCCESSFUL ROCK MICROTUNNELING

Understand the geology

Understand the limitations

- Microtunneling Equipment
- Jacking Pipe Materials
- Microtunneling Means & Methods

UNDERSTAND THE GEOLOGY

Start with bid documents
Review the Geotechnical Study
Your goal is to understand the behavior of the ground

GEOTECHNICAL STUDY SHOULD INCLUDE

- Type of rock by drive and within drive length
- Location of any transition zones in each drive
- Orientation & spacing of rock fractures/bedding
- Unconfined Compressive Strength (UCS) with structural or non-structural failure notation for every test

Non-Structural = 16,503 psi

Structural = 3,489 psi

GEOTECHNICAL STUDY SHOULD INCLUDE

- RQD (%)
- Recovery (%)
- Cerchar Abrasivity Index
- Brazilian Tensile Strength
- Point Load Test
- Punch Penetration Test
- Thin Section Petrographic Analysis including description of any mineral suturing conditions
- Take note of unusual rock Sutured or "Tough" (e.g. amphibolite or diabase)
- Historical research into previous TBM tunnels in the area

IMPACT OF ROCK GEOLOGY

- Sedimentary Rock Formations

 Often "ideal" microtunneling ground
 Exceptions:
 - Sandstone abrasivity cutter wear
 - Limestone solution channels steering
 - Decomposed layers friction

IMPACT OF ROCK GEOLOGY

Igneous (Quartzite) Rock Formations

- Rarely "ideal" microtunneling ground
- Often weathered in the tunnel profile
- Often mixed face & mixed reach drives
- Can be extremely hard (>20 ksi UCS)
- Can be massive (RQD>75%)
- Can be extremely abrasive (Cerchar>3.5)
- Can be sutured limiting disk cutter effectiveness

EQUIPMENT LIMITATIONS

Face access only in MTBMs >59" OD

Disk Cutters limitations

- Typically 11" diameter or smaller
- Limited thrust (11"-17,000# vs 17"-70,000#)
- Difficult to change in MTBM chamber
- Disk cutters can break & hardware can fall out

Slurry Separation System Impacts

- Slurry lines can clog on rock chips
- High wear on slurry lines, pumps & shaker screens

EQUIPMENT LIMITATIONS

MTBM slow compared to conventional TBM

- Revolution per minute (RPM) slower (2.5-7.5 vs 10-15)
- Thrust is lower reducing penetration/revolution
- Torque capacity lower
- Checking/changing disk cutters slower

Formula for TBM Production/shift = RPM x Penetration/Revolution x % Mining Time/Shift Typically 20% to 40% of Conventional TBM

CHANGING DISK CUTTERS COMPARISON

CHANGING DISK CUTTERS

... while microtunneling ...

JACKING PIPE MATERIAL LIMITATIONS

Steel casing preferred

- Permalok joint flexibility
- Avoid welded joints

Avoid unreinforced jacking pipe

- Clay
- Polycrete
- Fiberglass

Avoid irregularly shaped pipe

Out of round or trapezoidal

PIPE MATERIAL LIMITATIONS

Reason for avoiding unreinforced jacking pipe:

 Debris piles up in the annulus under the pipe with drive distance creating three edge bearing type failure

MEANS & METHODS LIMITATIONS

Two pass preferred

Overcut typically double

6 asto casca are 6 catare Allow for gage cutter wear
Allow for debris pile up in annulus invert

Max drive length less than soft ground
 Interjack stations needed even with steel casing

Mixed Face & Mixed Reach Drives

& METHODS LIMITATIONS

- Typical ground conditions for gravity sewer profiles
- Rock cutter wheel (RCW) required for entire drive
- RCW Smaller openings slows production in soft ground
- Must go slow in transitions to steer to design L&G
- RCW & crushing chamber clog in clayey ground
- Over excavation possible in transition zones
- Use bentonite slurry to minimize soft ground loss

MEANS & METHODS LIMITATIONS

Cam Locking

- Causes pipe surges & shock loading of disk cutters
- Use telescopic tail can to isolate MTBM

Pipe Wedging

- Rock will not yield to debris in annulus
- Debris comes from
 - Slurry cuttings
 - Tunnel arch fall out
 - Seams in weathered rock
 - Broken disk cutters and hardware

GENERAL RECOMMENDATIONS

Friction Control

- Set overcut to twice soft ground
- Inspect cutting tools regularly
- Maintain gage cutter
- Maintain MTBM scraper buckets & wear ring
- Account for broken hardware & disk cutters
- Use bentonite in the slurry
- Use polymer lubricate in the annulus

GENERAL RECOMMENDATIONS

Allow the Contractor to determine overcut because:

- Gage cutter wear dictates added overcut
- Settlement is not an issue in full face rock
- Recognize settlement may occur in mixed face & mixed reach drives

IN CONCLUSION

Rock microtunneling has become common place

Face access MTBMs are critical to success

Know when, where, and how to use microtunneling in these often extremely challenging ground conditions

QUESTIONS?

www.bradshawcc.com